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ABSTRACT
Even though deep learning models make success in many applica-
tion areas, it is well-known that they are vulnerable to data noise.
Therefore, researches on a model that detects and removes noisy
data or the one that operates robustly against noisy data have been
actively conducted. However, most existing approaches have limi-
tations in either that important information could be left out while
noisy data are cleaned up or that prior information on the dataset is
required while such information may not be easily available. In this
paper, we propose an effective semi-supervised learning method
with model ensemble and parameter scheduling techniques. Our
experiment results show that the proposed method achieves the
best accuracy under 20% and 40% noise-ratio conditions. The pro-
posed model is robust to data noise, suffering from only 2.08% of
accuracy degradation when the noise ratio increases from 20% to
60% on CIFAR-10. We additionally perform an ablation study to
verify net accuracy enhancement by applying one technique after
another.
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1 INTRODUCTION
Since data labeling process is commonly done by human, labeling
mistakes are inevitable. Therefore, deep learning models in the
real world often are trained based on incorrect labels, which may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

degrade the model’s generalization performance [1–3]. To resolve
this issue, many studies have attempted either to come up with
algorithms that detect and remove noisy data or to propose models
that perform robustly against noisy data [4–8]. However, the former
has a limitation that important information could be left out while
noisy data are cleaned up. The latter requires prior information on
the dataset such as clean validation data while such information
may not be easily available.

Semi-supervised learning [9] is a learning technique that can
train a model with a small portion of labeled data and a larger
amount of unlabeled data. In this paper, instead of removing de-
tected noisily-labeled data, the noisy data is utilized as unlabeled
data for semi-supervised learning. Our robust semi-supervised
learning method with noisy labels consists of the following compo-
nents:
• Prediction ensemble: To achieve better predictions, an en-
semble of the prediction of the model and the Exponential
Moving Average (EMA) is utilized. We use two weak aug-
mentation strategies for better consistency regularization.
Further details will be addressed in Section 3.1.
• Loss weight (𝜆) scheduling: Labeled losses at the start of
training dominate unsupervised losses, but they may be
unintentionally regarded as noisy data. Therefore, it may be
desirable to increase the weight of unsupervised losses in
the early stage to increase the convergence speed of learning.
Further details will be discussed in Section 3.2.
• Sharpening: As proved in [10], sharpening may be effective
to reduce the entropy of label distribution. In this study, we
apply sharpening to modify the temperature of categorical
distribution.

The rest of this paper is organized as follows. In Section 2, we
address noisy labels, semi-supervised learning, and related works.
Section 3 discusses the proposed method. In Section 4, we discuss
implementation details, experimental results, and analysis of the
results. Section 5 will conclude the paper.

2 RELATEDWORKS
2.1 Noisy Label
A noisy label is defined as an incorrectly-assigned data label and
it is regarded as one type of data noises. Noisy labels are known
to be more harmful to learning than feature noises [3], another
type of data noises. For example, when it comes to an image, even
if some pixels are distorted, a model can get useful information
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from other pixels to avoid significant deterioration. However, a
significant information loss occurs when a sample is incorrectly
labeled because the label cannot be replaced by other information.
There are two main approaches to train a model with noisy data.
The first one is to train a model with the remaining clean data after
detecting and removing data with noisy labels. The second is to
train a robust model that works well even with noisy labels by
utilizing regularization or loss functions to prevent overfitting due
to noisy labels [4].

Some of the well-known existing works to remove data with
noisy labels are as follows. Co-teaching [5] detected noisy data by
allowing two networks to be trained together where one network
is used to select data for training the other. In Huang et al.’s O2U-
Net [6], the learning progress from underfitting to overfitting is
repeated several times just by changing the learning rate, which
is a parameter, and the noisy label is corrected by calculating the
average loss of data.

On the other hand, Li et al.’s DivideMix [7] used co-refinement
and co-guessing to improve MixMatch [10]. MixMatch guessed
a low-entropy label for unlabeled data and used MixUp [11] to
mix labeled and unlabeled data. They used a dynamic Gaussian
Mixture Model (GMM) to divide the training set into labeled and
unlabeled data based on the loss of each sample. In Zhou et al. [8],
the noisy label was detected more reliably than a method using
the simple average by calculating the loss using the EMA. In this
paper, we also employ the EMA model to improve the classification
performance, focusing on generating a prediction with a smaller
variance compared with the instantaneous prediction.

2.2 Semi-Supervised Learning
Semi-supervised learning is a machine learning technique that
trains a model with a small amount of labeled data and a larger
amount of unlabeled data [9]. It is designed to overcome the limita-
tions of supervised learning and unsupervised learning. Supervised
learning requires only the labeled data, where data labeling takes
lots of effort and time. Unsupervised learning uses only the un-
labeled data, but its application area is very limited. In general,
there are two different approaches in semi-supervised learning:
Pseudo-labeling methods and Hybrid methods [12]. The first ap-
proach refers to a method of creating pseudo labels with a weakly
supervised model. Self-supervised learning of Zhai et al.[13] trains
the base model with a supervised method with a small amount of
labeled data, and the prediction value of this model is used as a label
for the remaining unlabeled data. Blum et al.’s Co-Training [14]
trains two separate classifiers based on two views of data. Classifiers
train each other with the pseudo-label with the highest confidence.
Finally, a single classification result is obtained by combining the
predictions of the two classifiers.

The other approach, the hybrid method refers to a combined
method of various semi-supervised ideas. Berthelot et al.’s Mix-
Match created a single loss by combining the following three ap-
proaches: entropy minimization, consistency regularization, and
generic regularization. Entropy minimization is a method to induce
a model to generate confident output predictions for unlabeled data.
Consistency regularization is a method to make a model gener-
ate the same output distribution even for distorted inputs. Finally,

generic regularization is a method to ensure that a model general-
izes well and does not overfit the training data.

𝑙𝑠 = 𝐻 (𝑦, 𝑝 (𝑦 |𝑥𝑙 ))
𝑙𝑢 = 𝐻 (𝑦, 𝑞(𝑦 |𝐴(𝑥𝑢 )))

𝑙 = 𝑙𝑠 + 𝜆𝑙𝑢
(1)

Sohn et al.’s FixMatch [15] is a semi-supervised learning method
using consistency regularization and pseudo-labeling. Equation 1
is a loss term of unlabeled data in FixMatch. Labeled data (𝑥𝑙 ) are
trained by supervised learning to generate the supervised loss (𝑙𝑠 ).
Unlabeled data (𝑥𝑢 ) are first weakly augmented and are then in-
ferred to generate a pseudo label (𝑞), which is used as a target
value when learning strongly-augmented data. So, the unsuper-
vised loss(𝑙𝑢 ) is a cross entropy loss between the pseudo label and
the target value. The final loss is the sum of the two losses(𝑙𝑠 , 𝑙𝑢 ).
The proposed method of this paper is a modified FixMatch method
in the sense that labels for noisy label data are removed to make
unlabeled data and clean data are used for supervised learning.

3 PROPOSED METHOD

Algorithm 1: Learning with Noisy Data using Semi-
supervised Learning
1 Input: model, noisy dataset D, remain rate p, initial loss

weight 𝜆𝑠 , final loss weight 𝜆𝑓 , augmentation strategies
(Augment1-3), sharpening temparature 𝑇

2 Step 1: Select clean data from dataset D

3 for 𝑒𝑝𝑜𝑐ℎ ← 0 to total_epoch do
4 compute loss on every sample of D
5 record loss per sample 𝑙𝑡
6 𝑙𝑡 = 𝑙𝑡−1 + 𝑙𝑡
7 remove the label of top (1-p)% of samples with high loss
8 get a new labeled (𝑋,𝑌 ) and a new unlabeled dataset (𝑋𝑢 )

9 Step 2: Train model with ensembled FixMatch

10 for 𝑒𝑝𝑜𝑐ℎ ← 0 to max_epoch do
11 for 𝑗 ← 0 to batches do
12 compute loss on 𝑋𝑙 : 𝑙𝑠
13 𝑙𝑜𝑔𝑖𝑡1, 𝑙𝑜𝑔𝑖𝑡𝑠𝐸𝑀𝐴1 = model(Augment1(𝑋𝑢 )),

EMA(Augment1(𝑋𝑢 ))
14 𝑙𝑜𝑔𝑖𝑡2, 𝑙𝑜𝑔𝑖𝑡𝑠𝐸𝑀𝐴2 = model(Augment2(𝑋𝑢 )),

EMA(Augment2(𝑋𝑢 ))
15 ensemble logit

𝑙𝑒 = (𝑙𝑜𝑔𝑖𝑡1 + 𝑙𝑜𝑔𝑖𝑡𝑠𝐸𝑀𝐴1 + 𝑙𝑜𝑔𝑖𝑡2 + 𝑙𝑜𝑔𝑖𝑡𝑠𝐸𝑀𝐴2)/4
16 compute loss on (Augment3(𝑋𝑢 ), 𝑙𝑒 ): 𝑙𝑢
17 𝜆← 𝐶𝑜𝑠𝑖𝑛𝑒_𝑑𝑒𝑐𝑎𝑦 (𝜆𝑠 , 𝜆𝑓 , epoch)
18 𝑙 = 𝑙𝑠 + 𝜆 ∗ 𝑙𝑢
19 update model weights

This paper proposes a semi-supervised learning method that
efficiently trains the dataset with noisy labels. The proposedmethod
is based on FixMatch, and it is described in Algorithm 1. First, we
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Figure 1: Learning algorithm for unlabeled data. Unlabeled images that are weakly augmented by two weak augmentation
strategies (Augment1 and Augment2) are fed into the original model (Model) and the EMA model(Model’). Then, prediction
ensembles are obtained and sharpened with temperature 𝑇 . Prediction ensembles with the maximum value that exceeds
the threshold are converted to pseudo labels. Finally, the pseudo labels are used to compute the cross-entropy loss (𝐻 ) with
strongly-augmented (Augment3) images and update weights.

train all data and select p% of data with the smallest average loss.
We choose p as 10 in the experiments of this study. The selected data
are regarded as clean data and a labeled dataset (𝑋𝑙 , 𝑌 ) is formed.
The remaining unselected data are considered as noisy data and
their labels are removed to create an unlabeled dataset (𝑋𝑢 ).

The labeled (𝑋𝑙 , 𝑌 ) and the unlabeled (𝑋𝑢 ) datasets are the in-
puts to the model in every iteration. Labeled data generates the
supervised loss (𝑙𝑠 ) through supervised learning, and unlabeled data
generates the unsupervised loss (𝑙𝑢 ). The learning method with un-
labeled data of the proposed algorithm is illustrated in Figure 1.
First, the same image is fed into the model through different aug-
mentation techniques. The weakly augmented image is the input
to the model and the EMA model, respectively, and the two predict
ensembles are used to create a pseudo label. In the experiments of
this study, 𝛼 was chosen to be 0.999, which is generally used in the
EMA method. Equation 2 shows how parameter Θ

′
𝑡 of the EMA

model is calculated. Θ
′
𝑡 at the current iteration 𝑡 is computed as a

weighted sum of Θ𝑡 , the parameter of the original model and Θ
′
𝑡−1,

the previous parameter of the EMA model. 𝛼 is the weight.

Θ
′
𝑡 = 𝛼Θ

′
𝑡−1 + (1 − 𝛼)Θ𝑡 (2)

𝑠ℎ𝑎𝑟𝑝𝑒𝑛(𝑙,𝑇 ) =
𝑙

1
𝑇

𝑖∑𝐿
𝑗=0 𝑙

1
𝑇

𝑗

(3)

After calculating the loss between the generated pseudo label
and the predicted value of the strongly-augmented image, sharpen-
ing is applied to the prediction to reduce the entropy of the label
distribution, as Equation 3. Hyperparameter 𝑇 was set to 0.5 in
the experiments of this study. When temperature 𝑇 is lower than
1, the model will output low entropy predictions. It is added to
the supervised loss to calculate the final loss value that will be
used for training and the model weights are updated accordingly.

Table 1: Different types of Augmentation strategies used

Augmentations Intensity Augmentation Strategies

Augment1 Weak RandomHorizontalFlip, RandomCrop
Augment2 Weak RandomRotation, RandomCrop
Augment3 Strong Augment1+RandAugmentation

The loss weight 𝜆 that determines the ratio of the labeled and the
unsupervised losses, follows cosine decay, as in Equation 4.

𝐶𝑜𝑠𝑖𝑛𝑒_𝑑𝑒𝑐𝑎𝑦 (𝜆𝑠 , 𝜆𝑓 , 𝑡) = 1 + 1
2
(𝜆𝑠 − 𝜆𝑓 ) (1 + 𝑐𝑜𝑠 (

𝑡

𝑡𝑓
𝜋)) (4)

Thus, the unsupervised loss will have a considerable influence
in the early stage when the influence of unlabeled data is small.
𝜆, 𝜆𝑠 , 𝜆𝑓 , 𝑡𝑓 are the current loss weight, the initial loss weight, the
final loss weight and the total number of iterations, respectively.

3.1 Prediction Ensemble
Figure 1 shows the overall learning algorithm for unlabeled data.
One of the important things in training a model using the unsu-
pervised loss with unlabeled predictors is to make pseudo labels
reliable. Therefore, in addition to getting better target values with
the weight EMA model (Model’ in Figure 1), a prediction ensemble
is used to ensure the stability of the model predictions. In addition,
the efficiency of the ensemble was improved by adding a second
weak augmentation technique to FixMatch, which used only one
weak augmentation technique. The specific augmentation tech-
nique used is shown in Table 1. The net improvement due to this
method will be discussed in Section 4.
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Table 2: Comparison of accuracy between the proposed method and the previous papers. The best results are in highlighted
bold.

CIFAR-10 CIFAR-100

Noise Ratio 20% 40% 60% 80% 20% 40% 60% 80%

MentorNet [16] 92 91.2 74.2 60 73.5 68.5 61.2 35.5
Co-Teaching [5] 87.26 82.8 74.04 26.23 64.4 57.42 47.98 23.22
Arazo et al. [17] 94 92.8 90.3 74.1 73.7 70.1 59.5 39.5
O2U-net [6] 92.57 90.33 - 43.41 74.12 69.21 - 39.39

MentorMix [18] 95.6 94.2 91.3 81 78.6 71.3 64.6 41.2
DivideMix [7] 96.1 94.9 94.3 93.2 77.3 75.2 72 60

Ours 96.43 95.14 94.35 80.46 75.81 75.49 70.99 54.96

Figure 2: Training loss of labeled (blue line) and unlabeled (orange line) data. (a) Plot of loss on the CIFAR-10 dataset. (b) Plot of
loss on the CIFAR-100 dataset.

Figure 3: Comparison of accuracy between the case where
only ensemble(blue dotted line) is applied and the case with
the loss weight(𝜆) scheduling (blue line)

3.2 Loss Weight Scheduling
The loss weight 𝜆 determines the ratio of the labeled and the unsu-
pervised losses. In the proposed algorithm, the loss weight multi-
plied by the unsupervised loss is amplified in the early stage, and
the value gets smaller gradually. The advantages of such sched-
uling are: 1) At the beginning of training, the valuable properties
of unlabeled data are stably learned by amplifying the ones with
a small impact of the unsupervised loss. 2) This scheduling has
a compensation effect for labeled loss caused by noisy data that
cannot be completely removed. Figure 2 shows the increasing trend
of the labeled and the unsupervised losses when training. At the
beginning of training, the labeled loss dominates the unsupervised

loss, but it is more likely to be calculated with noisy data. Therefore,
it is possible to increase the proportion of the unsupervised loss at
the beginning for faster convergence speed of learning.

Figure 3 compares the initial accuracy trends between the case
where only the ensemble method is used and the other case where
the loss weight scheduling is additionally applied. Experimental
results confirm that the initial accuracy increases when the loss
weight scheduling is used.

4 EVALUATION
4.1 Implementation Details
Experiments are carried out in 2 steps. First, clean data from noisy
dataset 𝐷 are selected. Next, the ensembled model is trained. We
used ResNet50 [19] for both steps. We trained the model with Sto-
chastic Gradient Descent (SGD) with a learning rate of 0.01, a mo-
mentum of 0.9, and a weight decay of 0.00001. CIFAR-10 and CIFAR-
100 were used with a batch size of 32 for a total of 500 epochs. As
the start and the end values of the loss weight in Equation 4 (𝜆𝑠 , 𝜆𝑓 ),
we chose 1.2 and 1, respectively. Sharpening temperature 𝑇 was
set to 0.5. The experiments were conducted on the dual NVIDIA
GeForce RTX 3090 GPU.

4.2 Experiment Results and Analysis
Comparison with existing works. Table 2 summarizes the ac-
curacy comparison with existing works on the CIFAR-10 and the
CIFAR-100 datasets. As a result, higher accuracy was achieved than
the compared existing methods with 20% to 60% noise ratios on
CIIFAR-10 and 40% noise ratios on CIFAR-100.
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The results show that the proposed method is more efficient at
the noise ratio of 20% and 40%, while it shows less improvement at
the noise ratio more than 60%. Especially for the noise ratio of 20%
to 40%, our method shows only 1.29% of accuracy degradation on
the CIFAR-10 dataset and the 0.32% on CIFAR-100 dataset.

Figure 4: The accuracy of Step 1 from Algorithm 1. It shows
the portion of real noisy label among detected noisy label
data by the model.

The results for noise ratio 80% on both CIFAR-10 and CIFAR-100
show worse performance than the existing works. We analyze that
it is because detected noise label from Step 1 of Algorithm 1 was
unstable. Figure 4 shows the percentage of truly noisy labels among
detected noisy labels by the model. From this result, we can figure
out that while Step 1 can detect clean data for the noise ratio of
20 to 60% with high accuracy (higher than 98%), accuracy drops
sharply when the ratio reaches 80%.

Ablation Study. Figure 5 shows the net accuracy enhance-
ment when we incrementally apply each technique of the proposed
method one by one. This experiment is conducted with the noise
ratios of 40% and 60% on the CIFAR-10 dataset. The result shows
that the EMA ensemble and the 𝜆 scheduling improve classifica-
tion performance and shows the best accuracy when applying both
methods together. The accuracy is improved by 1.59% and 2.77%
for the noise ratio of 40% and 60%, respectively.

The discussions in this section can be summarized as follows:

• We proposed a prediction ensemble model using the EMA
model and a loss weight(𝜆) scheduling. It has confirmed that
two methods work well for classification task containing
noisy label data from ablation study, showing 1.59% and
2.77% of accuracy improvement.
• The proposed method shows better accuracy for data with
a relatively low noise ratio. We figure out that it is because
the model can hardly detect clean data when the noise ratio
is above 80%. The detection accuracy drops below 85% for
the noise ratio of 80%.
• The trained model is robust to noise ratio changes. It suffers
from only 2.08% of accuracy degradation when the noise
ratio increases from 20% to 60% on CIFAR-10 and 0.32% of
accuracy degradation when the noise ratio increases from
20% to 40% on CIFAR-100, respectively.

Figure 5: The accuracy comparison results of (1) Baseline
(only FixMatch), (2) applying the EMA ensemble on Baseline,
(3) applying the 𝜆 scheduling on Baseline and (4) applying
both the ensemble and the scheduling on Baseline. The white
bar indicates the result of noisy data for noise ratio of 40%
and the hatched bar is that for the noise ratio of 60% on the
CIFAR-10 dataset.

5 CONCLUSION
Since the data labeling process is usually done by humans, labeling
mistakes are inevitable. Deep learning models are vulnerable to
incorrect labels and the model’s performance may drop drastically
when trained with noisily-labeled data. Methods that detect and
remove noisy data have been studied to solve the problem. However,
removing lots of noisy data may cause significant information loss.
In this paper, a method to convert noisy data into unlabeled data
instead of removing the noisily-labeled data is proposed. When two
enhancement techniques, ensemble, and 𝜆 scheduling are applied
together with the proposed method, the accuracy is improved by
1.59% and 2.77% for the noise ratios of 40% and 60%, respectively
on the CIFAR-10 dataset.
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